Respuesta :
We have the system of equations:
x - 2y = 2
3x + y = 6
From equation 1 we express y.
x - 2y = 2
We pass the addend with the variable x from the left to the right and change the sign.
-2y = 2 - x
We divide both parts of the equation by the multiplier of y.
[tex]\dfrac{(-1)2y}{-2}=\dfrac{2-x}{-2}[/tex]
[tex]y=\dfrac{x}{2}-1[/tex]
We put the result y in equation 2.
3x + y = 6
We obtain:
[tex]3x+\left(\dfrac{x}{2}-1\right)=6[/tex]
[tex]\dfrac{7x}{2}-1=6[/tex]
We pass the free addend -1 from the left to the right, changing the sign.
[tex]\dfrac{7x}{2}=1+6[/tex]
[tex]\dfrac{7x}{2}=2[/tex]
We divide both parts of the equation by the multiplier of x.
[tex]\dfrac{\frac{7}{2}x }{\frac{7}{2} }=\dfrac{7}{\frac{7}{2}}[/tex]
[tex]x=2[/tex]
What
[tex]y=\dfrac{x}{2}-1[/tex]
then
[tex]y=-1+\dfrac{1}{2}\cdot2[/tex]
[tex]y=0[/tex]
Answer:
- y = 0
- x = 2
Therefore, the correct option is C.
[tex]\red{\boxed{\green{\boxed{\boldsymbol{\purple{Pisces04}}}}}}[/tex]