Respuesta :

The derivative of the function is =   [tex]-\frac{3x^5\left(x^3-2\right)}{\left(1+x^3\right)^4}[/tex].

What is Derivative?

The derivative is the instantaneous rate of change of a function with respect to one of its variables.

Given function:

y= [tex](x^{-2} + x )^{-3}[/tex]

Differentiating and applying Chain Rule

=[tex]-\frac{3}{\left(x^{-2}+x\right)^4}\frac{d}{dx}\left(x^{-2}+x\right)[/tex]

= [tex]-\frac{3}{\left(x^{-2}+x\right)^4}\left(-\frac{2}{x^3}+1\right)[/tex]

= [tex]-\frac{3x^5\left(x^3-2\right)}{\left(1+x^3\right)^4}[/tex]

Hence, the value of derivative is   [tex]-\frac{3x^5\left(x^3-2\right)}{\left(1+x^3\right)^4}[/tex].

Learn more about derivative here:

brainly.com/question/124529

#SPJ1