Respuesta :

The value of constant c for which the function k(x) is continuous is zero.

What is the limit of a function?

The limit of a function at a point k in its field is the value that the function approaches as its parameter approaches k.

To determine the value of constant c for which the function of k(x)  is continuous, we take the limit of the parameter as follows:

[tex]\mathbf{ \lim_{x \to 0^-} k(x) = \lim_{x \to 0^+} k(x) = 0 }[/tex]

[tex]\mathbf{\implies \lim_{x \to 0 } \ \ \dfrac{sec \ x - 1}{x}= c }[/tex]

Provided that:

[tex]\mathbf{\implies \lim_{x \to 0 } \ \ \dfrac{sec \ x - 1}{x}= \dfrac{0}{0} \ (form) }[/tex]

Using l'Hospital's rule:

[tex]\mathbf{\implies \lim_{x \to 0} \ \ \dfrac{\dfrac{d}{dx}(sec \ x - 1)}{\dfrac{d}{dx}(x)}= \lim_{x \to 0} sec \ x \ tan \ x = 0}[/tex]

Therefore:

[tex]\mathbf{\implies \lim_{x \to 0 } \ \ \dfrac{sec \ x - 1}{x}=0 }[/tex]

Hence; c = 0

Learn more about the limit of a function x here:

https://brainly.com/question/8131777

#SPJ1