Respuesta :

Answer:

13

Step-by-step explanation:

since you already have the formular and the values just substitute them, collect like terms and solve you get your answer

Answer:

Hypotenuse = 17

Step-by-step explanation:

Given that,

  • Perpendicular = 15
  • Hypotenuse = ?
  • Base = 8

Using Pythagoras' Theorem,

  • Pythagoras' Theorem = (Base)²+(Perpendicular)² = (Hypotenuse)²

Substituting the values,

  • [tex](8) {}^{2} +15 {}^{2} = ( \rm \: Hypotenuse) {}^{2} [/tex]
  • [tex]64 + 225 = c {}^{2} [/tex]
  • [tex]289 = c {}^{2} [/tex]
  • [tex] \sqrt{289} = c {}^{2} [/tex]
  • [tex] \sqrt{17 \times 17} =c {}^{2} [/tex]
  • [tex] \rm \: Hypotenuse = \boxed{17}[/tex]

Hence,the length of the hypotenuse is 17.