Use triangle XYZ to answer questions 1-3

1) You special right triangles to help fine the length of segment XY. What is the exact base of triangle XYZ?

2) what is the exact area of triangle XYZ? Leave your answer in RADICAL terms. Show your work

3) What is the area of triangle XYZ to the nearest tenth of a square ft?

Use triangle XYZ to answer questions 13 1 You special right triangles to help fine the length of segment XY What is the exact base of triangle XYZ 2 what is the class=

Respuesta :

For the triangle XYZ, the answers are:1)XY=[tex]8\sqrt{3}[/tex]; 2)Exact Area of triangle XYZ= [tex]32\sqrt{3} ft[/tex] and 3) Area of triangle XYZ = 55.4 ft.

RIGHT TRIANGLE

A triangle is classified as a right triangle when it presents one of your angles equal to 90º.  The greatest side of a right triangle is called hypotenuse. And, the other two sides are called cathetus or legs.

The math tools applied for finding angles or sides in a right triangle are the trigonometric ratios or the Pythagorean Theorem.

The Pythagorean Theorem says: [tex](hypotenuse)^2=(leg_1)^2+(leg_2)^2[/tex] . And the main trigonometric ratios are:

[tex]sin(\alpha )=\frac{opposite \;leg}{hypotenuse} \\ \\ cos(\alpha )=\frac{adjacent\;leg}{hypotenuse}\\ \\ tan(\alpha )=\frac{opposite \;leg}{adjacent\;leg}[/tex]

  1. Finding the segment XY.

[tex]cos (30 )=\frac{adjacent\;leg}{hypotenuse} \\ \\ \frac{\sqrt{3} }{2} =\frac{XY}{16} \\ \\ 2XY=16\sqrt{3} \\ \\ XY=8\sqrt{3}\;ft[/tex]

    2.Finding the exact area of triangle XYZ

The area of a right triangle is equal to  [tex]\frac{1}{2} * base *height[/tex]. In this exercise the base is equal to [tex]8\sqrt{3}[/tex]. For finding the height, you should apply the trigonometric ratio for sin.

[tex]sin (30 )=\frac{opposite\;leg}{hypotenuse} \\ \\ \frac{{1} }{2} =\frac{XZ}{16} \\ \\ 2XZ=16\\ \\ XZ=8\;ft[/tex]

Therefore, the area will be:

[tex]\frac{1}{2} * base *height\\ \\ \frac{1}{2} * 8\sqrt{3} *8=32\sqrt{3} ft[/tex]

    3.Finding the area of triangle XYZ  to the nearest tenth of a square ft

Knowing that [tex]\sqrt{3}= 1.73205\dots[/tex], the solution will be:

[tex]\frac{1}{2} * base *height\\ \\ \frac{1}{2} * 8\sqrt{3} *8=32\sqrt{3} =32*1.73205=55.4 ft[/tex]

Learn more about trigonometric ratios here:

brainly.com/question/11967894

#SPJ1