Respuesta :
Put in the formula
[tex]\\ \rm\Rrightarrow A=P(1+r)^t[/tex]
[tex]\\ \rm\Rrightarrow 7255=6000(1+0.055)^t[/tex]
[tex]\\ \rm\Rrightarrow 1.20917=(1.055)^t[/tex]
[tex]\\ \rm\Rrightarrow ln1.20917=tln1.055[/tex]
[tex]\\ \rm\Rrightarrow t=\dfrac{ln1.20917}{ln1.055}[/tex]
[tex]\\ \rm\Rrightarrow t=3.5years[/tex]
Answer:
4 years (nearest year) or
3.5 years (nearest tenth) or
3 years, 6 months and 17 days (most accurate)
Step-by-step explanation:
Annual Compound Interest Formula
[tex]\large \text{$ \sf A=P\left(1+r\right)^{t} $}[/tex]
where:
- A = final amount
- P = principal amount
- r = interest rate (in decimal form)
- t = time (in years)
Given:
- A = $7,255
- P = $6,000
- r = 5.5% = 0.055
Substitute the given values into the formula and solve for t:
[tex]\implies \sf 7255=6000(1+0.055)^t[/tex]
[tex]\implies \sf 7255=6000(1.055)^t[/tex]
[tex]\implies \sf \dfrac{7255}{6000}=(1.055)^t[/tex]
Take natural logs of both sides:
[tex]\implies \sf \ln \left(\dfrac{7255}{6000}\right)= \ln (1.055)^t[/tex]
[tex]\textsf{Apply the power law}: \quad \ln x^n=n \ln x[/tex]
[tex]\implies \sf \ln \left(\dfrac{7255}{6000}\right)= t\ln (1.055)[/tex]
[tex]\implies \sf t=\dfrac{\ln \left(\dfrac{7255}{6000}\right)}{\ln (1.055)}[/tex]
[tex]\sf \implies t=3.547416819...[/tex]
Therefore, the number of years the principal was invested is:
- 4 years (nearest year)
- 3.5 years (nearest tenth)
- 3 years, 6 months and 17 days
Learn more about compound interest here:
https://brainly.com/question/27806277
https://brainly.com/question/27747709