Respuesta :
Answer:
[tex]\boxed{\sf x = -4 \pm 2\sqrt{6} }[/tex]
Explanation:
3x² + 24x - 24 = 0
factor the coefficient
3(x² + 8x) -24 = 0
Halve the second term and square it
3(x + 4)² -24 -3(4)² = 0
simplify the answer
3(x + 4)² -72 = 0
add 72 on both sides
3(x + 4)² = 72
divide both sides by 3
(x + 4)² = 24
square root both sides
x + 4 = ±√24
subtract both sides by 4
x = -4 ± 2√6
Answer:
[tex]x=-4\pm2\sqrt{6}[/tex]
Step-by-step explanation:
Completing the square for quadratic in the form [tex]ax^2+bx+c=0[/tex]
Given equation:
[tex]3x^2+24x-24=0[/tex]
Factor out 3:
[tex]\implies 3(x^2+8x-8)=0[/tex]
Divide both sides by 3:
[tex]\implies x^2+8x-8=0[/tex]
Add 8 to both sides:
[tex]\implies x^2+8x=8[/tex]
[tex]\textsf{Add }\: \left(\dfrac{b}{2}\right)^2\: \textsf{ to both sides}:[/tex]
[tex]\implies x^2+8x+\left(\dfrac{8}{2}\right)^2=8+\left(\dfrac{8}{2}\right)^2[/tex]
[tex]\implies x^2+8x+16=8+16[/tex]
[tex]\implies x^2+8x+16=24[/tex]
Factor the left side:
[tex]\implies (x+4)^2=24[/tex]
Square root both sides:
[tex]\implies x+4=\pm2\sqrt{6}[/tex]
Subtract 4 from both sides:
[tex]\implies x=-4\pm2\sqrt{6}[/tex]