100 POINTS I WILL MARK BRAINLIST
Solve this equation using the method of completing the square:

3x^2 + 24x - 24 = 0

Potential answers:
x = -2 +/- 4sqrt6
x = 4 +/- 2sqrt6
x = 2 +/- 4sqrt6
x = -4 +/- 2sqrt6

Respuesta :

Answer:

[tex]\boxed{\sf x = -4 \pm 2\sqrt{6} }[/tex]

Explanation:

3x² + 24x - 24 = 0

factor the coefficient

3(x² + 8x) -24 = 0

Halve the second term and square it

3(x + 4)² -24 -3(4)² = 0

simplify the answer

3(x + 4)² -72 = 0

add 72 on both sides

3(x + 4)² = 72

divide both sides by 3

(x + 4)² = 24

square root both sides

x + 4 = ±√24

subtract both sides by 4

x = -4 ± 2√6

Answer:

[tex]x=-4\pm2\sqrt{6}[/tex]

Step-by-step explanation:

Completing the square for quadratic in the form  [tex]ax^2+bx+c=0[/tex]

Given equation:

[tex]3x^2+24x-24=0[/tex]

Factor out 3:

[tex]\implies 3(x^2+8x-8)=0[/tex]

Divide both sides by 3:

[tex]\implies x^2+8x-8=0[/tex]

Add 8 to both sides:

[tex]\implies x^2+8x=8[/tex]

[tex]\textsf{Add }\: \left(\dfrac{b}{2}\right)^2\: \textsf{ to both sides}:[/tex]

[tex]\implies x^2+8x+\left(\dfrac{8}{2}\right)^2=8+\left(\dfrac{8}{2}\right)^2[/tex]

[tex]\implies x^2+8x+16=8+16[/tex]

[tex]\implies x^2+8x+16=24[/tex]

Factor the left side:

[tex]\implies (x+4)^2=24[/tex]

Square root both sides:

[tex]\implies x+4=\pm2\sqrt{6}[/tex]

Subtract 4 from both sides:

[tex]\implies x=-4\pm2\sqrt{6}[/tex]