Respuesta :
Answer:
[tex]\sf y' = \dfrac{x-7}{5}[/tex]
Explanation:
⇒ y = 5x + 7
⇒ 5x + 7 = y
⇒ 5x = y - 7
⇒ x = (y-7)/5
replace x with y
⇒ y' = (x-7)/5
- y=5x+7
Take this and solve for x
- 5x=y-7
- x=y-7/5
Interchange y and x
- y=x-7/5
So
The inverse is
[tex]\\ \rm\dashrightarrow y^{-1}(x)=\dfrac{x-7}{5}[/tex]