Answer:
p =1
q = 9
Step-by-step explanation:
f(x) = 2x³ - px² + 2qx + q
(x - 3) is a factor of f(x)
⇒f(3) = 0
2(3)³ - p*3² - 2q*3 +q = 0
2*27 - 9p - 6q + q = 0
54 - 9p - 5q = 0
-9p - 5q = -54 -------------------(I)
(2x - 1) is a factor of f(x)
2x - 1 = 0
2x = 1
[tex]\st x = \dfrac{1}{2}[/tex]
f(1/2) = 0
[tex]2*(\dfrac{1}{2})^{3}-p*(\dfrac{1}{2})^{2}-2q*\dfrac{1}{2}+q=0\\\\2*\dfrac{1}{8}-p*\dfrac{1}{4}-q+q = 0\\\\\dfrac{1}{4}-\dfrac{1}{4}p =0\\\\[Multiply the entire equation by 4]\\\\4*\dfrac{1}{4}-4*\dfrac{1}{4}p=0\\\\[/tex]
1 - p = 0
-p = -1
p = 1
Substitute p =1 in equation (I)
-9*1 - 5q = -54
-9 - 5q = -54
-5q = -54 + 9
-5q = -45
q = -45/(-5)
q = 9