solve for the missing side. round to the nearest 10th.

Answer :
[tex] \: [/tex]
Explanation :
[tex] \: [/tex]
Solution :
[tex] \: [/tex]
Where,
[tex] \: [/tex]
We know that,
[tex]{\longrightarrow \pmb{\mathbb {\qquad (UV) {}^{2} + (UW) {}^{2} =( VW) {}^{2} }}} \\ \\ [/tex]
Now, we will substitute the given values in the formula :
[tex]{\longrightarrow \pmb{\sf {\qquad (6) {}^{2} + (UW) {}^{2} =( 9) {}^{2} }}} \\ \\ [/tex]
We know that, (6)² = 36 and (9)² = 81. So,
[tex]{\longrightarrow \pmb{\sf {\qquad 36 + (UW) {}^{2} =81}}} \\ \\ [/tex]
Now, transposing 36 to the other side we get :
[tex]{\longrightarrow \pmb{\sf {\qquad (UW) {}^{2} =81 - 36 }}} \\ [/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad (UW) {}^{2} = 45}}} \\ \\ [/tex]
Now, we'll take the square root of both sides to remove the square from UW :
[tex]{\longrightarrow \pmb{\sf {\qquad \sqrt{(UW) {}^{2}} = \sqrt{ 45}}}} \\ \\ [/tex]
When we take the square root of (UW)² , it becomes UW,
[tex]{\longrightarrow \pmb{\sf {\qquad UW = \sqrt{45}}}} \\ \\ [/tex]
We know that, square root of 45 is 6.708.
[tex]{\longrightarrow \pmb{\sf {\qquad UW \approx6.708}}} \\ \\ [/tex]
So,