Respuesta :

Answer :

  • 6.7 mm

[tex] \: [/tex]

Explanation :

  • This is Right Angled Trian1gle.

[tex] \: [/tex]

Solution :

  • We'll solve this using the Pythagorean Theorem.

[tex] \: [/tex]

Where,

  • VW (9 mm) is the Hypotenuse.

  • UV (6 mm) is the Base.

  • UW is the Perpendicular .

[tex] \: [/tex]

We know that,

[tex]{\longrightarrow \pmb{\mathbb {\qquad (UV) {}^{2} + (UW) {}^{2} =( VW) {}^{2} }}} \\ \\ [/tex]

Now, we will substitute the given values in the formula :

[tex]{\longrightarrow \pmb{\sf {\qquad (6) {}^{2} + (UW) {}^{2} =( 9) {}^{2} }}} \\ \\ [/tex]

We know that, (6)² = 36 and (9)² = 81. So,

[tex]{\longrightarrow \pmb{\sf {\qquad 36 + (UW) {}^{2} =81}}} \\ \\ [/tex]

Now, transposing 36 to the other side we get :

[tex]{\longrightarrow \pmb{\sf {\qquad (UW) {}^{2} =81 - 36 }}} \\ [/tex]

[tex]{\longrightarrow \pmb{\sf {\qquad (UW) {}^{2} = 45}}} \\ \\ [/tex]

Now, we'll take the square root of both sides to remove the square from UW :

[tex]{\longrightarrow \pmb{\sf {\qquad \sqrt{(UW) {}^{2}} = \sqrt{ 45}}}} \\ \\ [/tex]

When we take the square root of (UW)² , it becomes UW,

[tex]{\longrightarrow \pmb{\sf {\qquad UW = \sqrt{45}}}} \\ \\ [/tex]

We know that, square root of 45 is 6.708.

[tex]{\longrightarrow \pmb{\sf {\qquad UW \approx6.708}}} \\ \\ [/tex]

So,

  • The measure of the missing side (UW) is 6.7 mm (Rounded to nearest tenth)

Otras preguntas