Respuesta :

Answer:

  • Volume of the sphere is 904.3 mi³

Step-by-step explanation:

Given that radius of the sphere is 6 miles. To find Volume of the sphere we will substitute the Value of radius in the given formula:

[tex] \\ \: \: \dashrightarrow { \underline{ \boxed { \pink{ \pmb{ \mathfrak {Volume_{(Sphere)} = \dfrac{4}{3} \pi r ^3 }}}}}} \\ \\ [/tex]

Substituting the required values:

[tex] \\ \: \: \dashrightarrow \sf \: \: Volume = \dfrac{4}{3} \times 3.14 \times {(6)}^{3} \\ \\ [/tex]

[tex] \: \: \dashrightarrow \sf \: \: Volume = \dfrac{4}{3} \times 3.14 \times 216 \\ \\ [/tex]

[tex] \: \: \dashrightarrow \sf \: \: Volume = \dfrac{4}{3} \times 678.24 \\ \\ [/tex]

[tex] \: \: \dashrightarrow \sf \: \: Volume = \dfrac{2712.96}{3} \\ \\ [/tex]

[tex] \: \: \dashrightarrow \sf \: \: { \underline{ \boxed{ \pink{ \pmb{ \mathfrak{Volume \approx 904.3 \: {mi}^{3} }}}}}} \\ \\ [/tex]

Hence,

  • Volume of the sphere is 904.3 mi³

Step-by-step explanation:

Given :-

  • radius of sphere = 6mi

To find =

  • Volume of sphere

Solution =

Volume of sphere = 4/3 πr³

putting the known values ,

Volume = 4/3 × 3.14 × 6³ mi³

Volume = 904.32 mi³

rounding off to nearest tenth ,

Volume = 904.3 mi³