Respuesta :
she can code 4/5 of her game in 1 hour at this rate.
[tex]\sf \dfrac{1}{4} \ hour \rightarrow \dfrac{1}{5} \ or \ 0.2 \ of \ her \ game[/tex]
[tex]\sf 1 \ hour \rightarrow \dfrac{\dfrac{1}{5} }{\dfrac{1}{4} } \ or \ \dfrac{0.2}{0.25} \ of \ her \ game[/tex]
[tex]\sf 1 \ hour \rightarrow \dfrac{1}{5} *\dfrac{4}{1} \ \ or \ \ \dfrac{0.2}{0.25} \ of \ her \ game[/tex]
[tex]\sf 1 \ hour \rightarrow \dfrac{4}{5} \ or \ 0.8 \ of \ her \ game[/tex]
Solution:
We know that:
- [tex]\frac{Game}{5} = \frac{Hour}{4}[/tex]
Let's multiply 4 both sides to see how much Sophia can code in 1 hour.
Multiplying 4 both sides:
- [tex]\frac{Game}{5} = \frac{Hour}{4}[/tex]
- [tex]\frac{Game}{5} \times 4 = \frac{Hour}{4} \times 4[/tex]
Finding how much Sophia can code in 1 hour.
- => [tex]\frac{Game}{5} \times 4 = \frac{Hour}{4} \times 4[/tex]
- => [tex]\frac{4}{5} \ of \ game = \frac{Hour}{4} \times 4 = 1 \ hour[/tex]
Thus, Sophia can code 4/5 of her game in 1 hour.