Prove that!
[tex]\tiny\displaystyle\rm \sum_{q=1}^{\infty}\left(a^{q}\left(1+\sum_{r=1}^{\infty} \frac{\prod \limits_{i=0}^{r+1}(q-i)}{\Gamma(r+1)}\left(\frac{b x^{m}}{a}\right)^{r}\right)\right)=\frac{a+b x^{m}}{1-\left(a+b x^{m}\right)}[/tex]

if all variables belong to natural number.

Respuesta :

Recall that if |x| < 1, then

[tex]\displaystyle \frac1{1-x} = \sum_{k=0}^\infty x^k[/tex]

So if |a + bxᵐ| < 1, then

[tex]\displaystyle \frac{a+bx^m}{1 - (a+bx^m)} = \sum_{q=1}^\infty (a+bx^m)^q = \sum_{q=1}^\infty a^q \left(1 + \frac{bx^m}a\right)^q[/tex]

By the binomial theorem,

[tex]\displaystyle \left(1 + \frac{bx^m}a\right)^q = \sum_{r=0}^q \binom qr \left(\frac{bx^m}a\right)^r[/tex]

The binomial coefficient is defined as

[tex]\dbinom nk = \dfrac{n!}{k!(n-k)!}[/tex]

if 0 ≤ k ≤ n, and 0 otherwise. Then we can rewrite the sum as

[tex]\displaystyle \left(1 + \frac{bx^m}a\right)^q = \sum_{r=0}^\infty \binom qr \left(\frac{bx^m}a\right)^r[/tex]

and pulling out the first term,

[tex]\displaystyle \left(1 + \frac{bx^m}a\right)^q = 1 + \sum_{r=1}^\infty \binom qr \left(\frac{bx^m}a\right)^r[/tex]

Finally,

[tex]\dbinom qr = \dfrac{q!}{r! (q-r)!} \\\\\\ = \dfrac{q(q-1)(q-2)\cdots(q-(r-1))(q-r)(q-(r+1))\cdots3\cdot2\cdot1}{r! (q-r) (q-(r+1)) (q-(r+2))\cdots3\cdot2\cdot1} \\\\\\ = \dfrac{q(q-1)(q-2)\cdots(q-(r-1))}{r!} \\\\ = \dfrac{\prod\limits_{i=0}^{r-1}(q-i)}{\Gamma(r+1)}[/tex]

since n! = Γ(n + 1). (I think the given upper limit in the product may be a mistake.)