[tex] \rm\frac{d}{dx} \left ( \bigg( \int_{1}^{ {x}^{2} {}{} } \frac{2t}{1 + { t}^{2} } dt\bigg) \bigg( \int_{ 1 }^{ lnx} \frac{1}{(1 + {t)}^{2} }dt \bigg)\right) \\ [/tex]​

Respuesta :

Applying the product rule gives

[tex]\displaystyle \frac{d}{dx}\int_1^{x^2}\frac{2t}{1+t^2}\,dt \times \int_1^{\ln(x)}\frac{dt}{(1+t)^2} + \int_1^{x^2}\frac{2t}{1+t^2}\,dt \times \frac{d}{dx}\int_1^{\ln(x)}\frac{dt}{(1+t)^2}[/tex]

Use the fundamental theorem of calculus to compute the remaining derivatives.

[tex]\displaystyle \frac{4x^3}{1+x^4} \int_1^{\ln(x)}\frac{dt}{(1+t)^2} + \frac{1}{x(1+\ln(x))^2}\int_1^{x^2}\frac{2t}{1+t^2}\,dt[/tex]

The remaining integrals are

[tex]\displaystyle \int_1^{\ln(x)}\frac{dt}{(1+t)^2} = -\frac1{1+t}\bigg|_1^{\ln(x)} = \frac12-\frac1{1+\ln(x)}[/tex]

[tex]\displaystyle \int_1^{x^2}\frac{2t}{1+t^2}\,dt=\int_1^{x^2}\frac{d(1+t^2)}{1+t^2}=\ln|1+t^2|\bigg|_1^{x^2}=\ln(1+x^4)-\ln(2) = \ln\left(\frac{1+x^4}2\right)[/tex]

and so the overall derivative is

[tex]\displaystyle \frac{4x^3}{1+x^4} \left(\frac12-\frac1{1+\ln(x)}\right) + \frac{1}{x(1+\ln(x))^2} \ln\left(\frac{1+x^4}2\right)[/tex]

which could be simplified further.