Respuesta :

you're correct that, since Hugo is charging Johnny $2000, so the amount invested will be 98000.

[tex]~~~~~~ \stackrel{\textit{\Large Hugo}}{\textit{Compound Interest Earned Amount}} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$98000\\ r=rate\to 6\%\to \frac{6}{100}\dotfill &0.06\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{quarterly, thus four} \end{array}\dotfill &4\\ t=years\dotfill &15 \end{cases}[/tex]

[tex]A=98000\left(1+\frac{0.06}{4}\right)^{4\cdot 15}\implies A=98000(1.015)^{60}\implies A\approx 239435.54 \\\\[-0.35em] ~\dotfill\\\\ ~~~~~~ \stackrel{\textit{\Large Hector}}{\textit{Compound Interest Earned Amount}}[/tex]

[tex]A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$100000\\ r=rate\to 5.5\%\to \frac{5.5}{100}\dotfill &0.055\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{monthly, thus twelve} \end{array}\dotfill &12\\ t=years\dotfill &15 \end{cases} \\\\\\ A=100000\left(1+\frac{0.055}{12}\right)^{12\cdot 15}\implies A=100000\left( \frac{2411}{2400} \right)^{180}\implies A\approx 227758.38[/tex]

well, seems that even though Hugo is charging some Johnny, the returned amount is more than with Hector, so Johnny should give Hugo a call.