Respuesta :
Answer:
[tex]m=-3[/tex]
Step-by-step explanation:
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Substitute and calculate
[tex]x_1=7[/tex]
[tex]x_2=11[/tex]
[tex]Substitute[/tex] [tex]into\ m=\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]y_1=6[/tex]
[tex]y_2=-6[/tex]
Substitute
[tex]m=\frac{-6-6}{11-7}[/tex]
Calculate the sum or difference
[tex]m=\frac{-12}{4}[/tex]
Cross out the common factor
[tex]m=-3[/tex]
I hope this helps you
:)
Hello.
Let's use the slope formula in order to find the slope:
[tex]\bf{\displaystyle\frac{y_2-y_1}{x_2-_x_1}[/tex]
Where
y₂ = the y-coordinate of the second point (-6)
y₁=the y-coordinate of the first point (6)
x₂=the x-coordinate of the second point (11)
x₁=the x-coordinate of the first point (7)
Plug in the values:
[tex]\bf{\displaystyle\frac{-6-6}{11-7} =\frac{-12}{4} =-3[/tex]
Therefore, m (the slope) is equal to -3.
I hope it helps.
Have an outstanding day. :)
[tex]\boxed{imperturbability}[/tex]