Respuesta :

Answer:

[tex]m=-3[/tex]

Step-by-step explanation:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Substitute and calculate

                   [tex]x_1=7[/tex]  

                   [tex]x_2=11[/tex]

      [tex]Substitute[/tex]        [tex]into\ m=\frac{y_2-y_1}{x_2-x_1}[/tex]

                    [tex]y_1=6[/tex]

                    [tex]y_2=-6[/tex]

Substitute

[tex]m=\frac{-6-6}{11-7}[/tex]

Calculate the sum or difference

[tex]m=\frac{-12}{4}[/tex]

Cross out the common factor
[tex]m=-3[/tex]

I hope this helps you

:)

Hello.

Let's use the slope formula in order to find the slope:

[tex]\bf{\displaystyle\frac{y_2-y_1}{x_2-_x_1}[/tex]

Where

y₂ = the y-coordinate of the second point (-6)

y₁=the y-coordinate of the first point (6)

x₂=the x-coordinate of the second point (11)

x₁=the x-coordinate of the first point (7)

Plug in the values:

[tex]\bf{\displaystyle\frac{-6-6}{11-7} =\frac{-12}{4} =-3[/tex]

Therefore, m (the slope) is equal to -3.

I hope it helps.

Have an outstanding day. :)

[tex]\boxed{imperturbability}[/tex]