Answer:
[tex]\frac{dy}{dx}=\frac{8(xsec^2(x)-tan(x)+3)}{(3-tan(x))^2}[/tex]
Step-by-step explanation:
[tex]y=\frac{8x}{3-tan(x)}\\ \\\frac{dy}{dx}=\frac{(3-tan(x))(\frac{d}{dx}8x)-(\frac{d}{dx}(3-tan(x)))(8x)}{(3-tan(x))^2}\\ \\ \frac{dy}{dx}=\frac{(3-tan(x))(8)-(-sec^2(x))(8x)}{(3-tan(x))^2}\\ \\ \frac{dy}{dx}=\frac{24-8tan(x)+8xsec^2(x)}{(3-tan(x))^2}\\ \\ \frac{dy}{dx}=\frac{8xsec^2(x)-8tan(x)+24}{(3-tan(x))^2}\\\\ \frac{dy}{dx}=\frac{8(xsec^2(x)-tan(x)+3)}{(3-tan(x))^2}[/tex]
Remember to use the Quotient Rule