Respuesta :

Answer:

[tex]2*x+1+\frac{2*x-5}{x^2+x+1}[/tex]

Step-by-step explanation:

Where, the quotient is 2·x + 1, and the reminder is 2·x - 5

Hence, the above is correct is as follows:

The given dividend is 2·x³ + 3·x² + 5·x - 4

The divisor is x² + x + 1

By long division of a polynomial we have;

2·x + 1 [Quotient]

(2·x³ + 3·x² + 5·x - 4) ÷ (x² + x + 1 )

2·x³ + 2·x² + 2·x

0    +   x²  + 3·x - 4

          x² + x    + 1

          0  + 2·x - 5

Thurs, we have:

[tex]\frac{(2*x^3 + 3*x^2 + 5*x - 4)}{x^2+x+1} =2*x+1+\frac{2*x-5}{x^2+x+1}[/tex]

Hence, the correct answer is [tex]2*x+1+\frac{2*x-5}{x^2+x+1}[/tex]  

[RevyBreeze]

Ver imagen RevyBreeze