Answer:
[tex]sinT=\dfrac{O}{H}=\dfrac{6\sqrt{2} }{19}[/tex]
[tex]cosT=\dfrac{A}{H}=\dfrac{17}{19}[/tex]
[tex]tanT=\dfrac{O}{A}=\dfrac{6\sqrt{2} }{17}[/tex]
[tex]sinS=\dfrac{O}{H}=\dfrac{17}{19}[/tex]
[tex]cosS=\dfrac{A}{H}=\dfrac{6\sqrt{2} }{19}[/tex]
[tex]tanS=\dfrac{O}{A}=\dfrac{17}{6\sqrt{2} }[/tex]
Step-by-step explanation:
Trig identities:
[tex]sin(x)=\dfrac{O}{H} \ \ \ \ \ cos(x)=\dfrac{A}{H} \ \ \ \ \ tan(x)=\dfrac{O}{A}[/tex]
where
- x = angle
- O = side opposite the angle
- A = side adjacent the angle
- H = hypotenuse
[tex]sinT=\dfrac{O}{H}=\dfrac{6\sqrt{2} }{19}[/tex]
[tex]cosT=\dfrac{A}{H}=\dfrac{17}{19}[/tex]
[tex]tanT=\dfrac{O}{A}=\dfrac{6\sqrt{2} }{17}[/tex]
[tex]sinS=\dfrac{O}{H}=\dfrac{17}{19}[/tex]
[tex]cosS=\dfrac{A}{H}=\dfrac{6\sqrt{2} }{19}[/tex]
[tex]tanS=\dfrac{O}{A}=\dfrac{17}{6\sqrt{2} }[/tex]