Respuesta :

Answer:

3)  [tex]y=\dfrac35x+\dfrac25[/tex]

4) a)  [tex]y=-2x+7[/tex]

  b)  [tex]y=\dfrac12x+\dfrac92[/tex]

Step-by-step explanation:

Exercise 3

[tex]-3x + 5y = 2[/tex]

[tex]\implies 5y = 3x + 2[/tex]

[tex]\implies y=\dfrac35x+\dfrac25[/tex]

Exercise 4

a) If L2 is parallel to L1, it has the same slope (gradient) ⇒ [tex]m = -2[/tex]

If L2 passes through point (3, 1):

[tex]y-y_1=m(x-x_1)[/tex]

[tex]\implies y-1=-2(x-3)[/tex]

[tex]\implies y=-2x+7[/tex]

So L2 = L1

b) If L3 is perpendicular to L1, then the slope of L3 is the negative reciprocals of the slope of L1  ⇒  [tex]m = \dfrac12[/tex]

If L3 passes through point (-5, 2):

[tex]y-y_1=m(x-x_1)[/tex]

[tex]\implies y-2=\dfrac12(x+5)[/tex]

[tex]\implies y=\dfrac12x+\dfrac92[/tex]

#Ex-3

[tex]\\ \tt\rightarrowtail -3x+5y=2[/tex]

[tex]\\ \tt\rightarrowtail 5y=2+3x[/tex]

[tex]\\ \tt\rightarrowtail y=3/5x+2/5[/tex]

#Ex_4(1)

  • Line is parallel so slope=3/5
  • Passes through (3,1)

Equation in point slope form

[tex]\\ \tt\rightarrowtail y-1=3/5(x-3)[/tex]

[tex]\\ \tt\rightarrowtail 5y-5=3x-9[/tex]

[tex]\\ \tt\rightarrowtail 3x-5y-4=0[/tex]

#2

  • Passes through (-5,2)
  • Slope=-5/3

[tex]\\ \tt\rightarrowtail y-2=-5/3(x+5)[/tex]

[tex]\\ \tt\rightarrowtail 3y-6=-5x-25[/tex]

[tex]\\ \tt\rightarrowtail 5x+3y+19=0[/tex]