Respuesta :

Answer:

25°

Step-by-step explanation:

In [tex]\triangle BCD[/tex]

BD = CD .....(Given)

[tex]\implies m\angle CBD = m\angle BCD[/tex]

(By isosceles triangle theorem)

[tex]m\angle BCD = 60\degree....(given)[/tex]

[tex]\implies m\angle CBD = 60\degree[/tex]

Now,

[tex]m\angle CBD + m\angle ABD= 180\degree[/tex]

(Angles in linear pair)

[tex]\implies 60\degree + m\angle ABD= 180\degree[/tex]

[tex]\implies m\angle ABD= 180\degree - 60\degree[/tex]

[tex]\implies m\angle ABD= 120\degree[/tex]

Next, in [tex]\triangle ABD[/tex]

[tex]m\angle BAD + m\angle ABD+ m\angle ADB= 180\degree[/tex]

(By interior angle sum postulate of a triangle)

[tex]\implies 35\degree + 120\degree+ x= 180\degree[/tex]

[tex]\implies 155\degree+ x= 180\degree[/tex]

[tex]\implies x= 180\degree-155\degree[/tex]

[tex]\implies x= 25\degree[/tex]

just a quick addition to the great work by Hrish ii above.

Check the picture below.

bearing in mind that twin sides stemming out of a vertex, BD and CD, make twin angles.

Ver imagen jdoe0001