Respuesta :

Answer:

[tex]x= 4[/tex]

Step-by-step explanation:

[tex]\frac{\sqrt{2x}}{\sqrt{x-2}\:}=2[/tex]                       [ bring √(x - 2) to the opposite side ]

[tex]\sqrt{2x} = 2\sqrt{x-2}[/tex]          

[tex](\sqrt{2x} )^{2} = (2\sqrt{x-2})^2[/tex]      [ square both sides ]

[tex]2x = 4(x-2)[/tex]  

[tex]2x=4x-8[/tex]

[tex]2x - 4x = -8[/tex]

[tex]-2x = -8[/tex]

[tex]x= 4[/tex]

Answer:

x=4

Step-by-step explanation:

[tex]\dfrac{\sqrt{2x} }{\sqrt{x-2}}=2[/tex]

Multiply both sides by [tex]\sqrt{x-2}[/tex] :

[tex]\implies \sqrt{2x}=2\sqrt{x-2}[/tex]

Square both sides:

[tex]\implies 2x=4(x-2)\\\\\implies 2x=4x-8[/tex]

Add 8 to both sides:

[tex]\implies 2x+8=4x[/tex]

Subtract [tex]2x[/tex] from both sides:

[tex]\implies 8=2x[/tex]

Divide both sides by 4:

[tex]\implies x=4[/tex]