[tex]\bold{\huge{\green{\underline{Solution}}}}[/tex]
[tex]\bold{\underline{ To\: Find }}[/tex]
[tex]\bold{\underline{ Let's \: Begin }}[/tex]
Here,
Therefore,
According to parallelogram law of resultant vector
If two vectors are represented by two adjacent sides of a parallelogram drawn from a point , the their resultant is equal to the diagonal of the parallelogram.
That is,
[tex]\sf{ R = AC^{2}= A^{2}+ B^{2}}[/tex]
But, we have to calculate the magnitude of the resultant vector
[tex]\sf{ | R |= √A^{2}+ B^{2}+ 2ABCos{\theta} }[/tex]
Subsitute the required values,
[tex]\sf{ | R |=\sqrt{ (10)^{2} + (15)^{2} + 2× 10 × 15 × cos 60{\degree}}}[/tex]
[tex]\sf{ | R | =\sqrt{ 100 + 225 + 20 × 15 × 1/2}}[/tex]
[tex]\sf{ | R | = \sqrt{100 + 225 + 10 × 15 }}[/tex]
[tex]\sf{ | R | = \sqrt{335 + 150 }}[/tex]
[tex]\sf{ | R | = \sqrt{485 }}[/tex]
[tex]\sf{\red{ | R | = 22.02 \: km}}[/tex]
Hence, The magnitude of the car resultant vector is 22.02 km.