Respuesta :

Your answer would be Dx=-4. 

Here is why: log implies that the base is 10log10n=nlog10=n

Using the above two facts, you will be able to get:
1100=10−2, so log(1100)=−2
log10x+2=x+2

x+2=−2, so x=−4

Answer:

Option A - x=-4

Step-by-step explanation:

Given : Expression [tex]\log(\frac{1}{100})=\log(10^{x+2})[/tex]

To find : Solve the expression?

Solution :

Step 1 - Write the expression

[tex]\log(\frac{1}{100})=\log(10^{x+2})[/tex]

Step 2 - Using law of logarithms,

[tex]\log x=\log y\Rightarrow x=y[/tex]

Applying in the expression,

[tex]\frac{1}{100}=10^{x+2}[/tex]

Step 3 - Solve the equation,

[tex]10^{-2}=10^{x+2}[/tex]

Step 4 - The bases are equal, equate the exponents

[tex]-2=x+2[/tex]

[tex]x=-4[/tex]

Therefore, The solution of the expression is [tex]x=-4[/tex]

So, Option A is correct.