Respuesta :

Answer:

4

Step-by-step explanation:

[tex](\frac{1}{2})^2\times(3\times5-3)+1^3[/tex]

This is an order of operations problem. II'll use using PEMDAS here:

  1. P: Evaluate expressions in parenthesis first
  2. E: Evaluate terms with exponents
  3. MD: Evaluate multiplication and division from left to right
  4. AS: Evaluate addition and subtraction from left to right

Parenthesis first. The first expression in parenthesis is already as simplified as it gets, so up next is the second one:

[tex]3\times5-3[/tex]

There are no parenthesis and there are no exponents, so do the multiplication first.

[tex]\rightarrow 3\times5-3\\\rightarrow 15-3\\\rightarrow 12[/tex]

Back to the original expression and we now have:

[tex](\frac{1}{2})^2\times(12)+1^3[/tex]

Exponents comes next:

[tex]\rightarrow (\frac{1}{2})^2=\frac{1^2}{2^2}=\frac{1}{4}\\\\\rightarrow 1^3=1[/tex]

Now we have:

[tex]\frac{1}{4}\times12+1[/tex]

Multiplication comes next:

[tex]\rightarrow \frac{1}{4}\times12=\frac{1}{4}\times\frac{12}{1}=\frac{12}{4}=3\\\\3+1[/tex]

Finally, addition.

[tex]3+1=4[/tex]