Respuesta :

Answer:

The distance between the parallel sides is 20cm.

Step-by-step explanation:

Area of a trapezoid:

[tex]A=\frac{a+b}{2}\times h[/tex]

where a and b are the 2 bases, and h is the height. The value we're trying to find here is the height.

3 of the 4 variables in this equation are already given:

A = 800

a = 48

b = 32

Just plug those in and solve for h:

[tex]\rightarrow 800=\frac{48+32}{2}\times h\\\rightarrow 800=\frac{80}{2}\times h\\\rightarrow 800=40\times h\\\rightarrow 800\div40=h\\\rightarrow h=20[/tex]

Answer:

The distance between the parallel sides of trapezium is 20 cm.

Step-by-step explanation:

Here's the required formula to find the distance between the parallel sides of trapezium.

[tex]\star\small{\underline{\boxed{\tt{\purple{A =\dfrac{1}{2} \times \Big(Sum \: of \: parallel \: sides \Big)\times h}}}}}[/tex]

  • »» A = area
  • »» h = height
  • »» sum of parallel sides = a+b

Substituting all the given values in the formula to find the distance between the parallel sides of trapezium :

[tex]{\implies{\sf{A = \dfrac{1}{2} \times \Big(Sum \: of \: parallel \: sides \Big)\times h}}}[/tex]

[tex]{\implies{\sf{A = \dfrac{1}{2} \times \Big( a + b\Big)\times h}}}[/tex]

[tex]{\implies{\sf{800 = \dfrac{1}{2} \times \Big(48 + 32\Big)\times h}}}[/tex]

[tex]{\implies{\sf{800 = \dfrac{1}{2} \times \Big( \: 80 \: \Big)\times h}}}[/tex]

[tex]{\implies{\sf{800 = \dfrac{1}{2} \times 80 \times h}}}[/tex]

[tex]{\implies{\sf{800 = \dfrac{80}{2} \times h}}}[/tex]

[tex]{\implies{\sf{h = 800 \times \dfrac{2}{80}}}}[/tex]

[tex]{\implies{\sf{h = \cancel{800} \times \dfrac{2}{\cancel{80}}}}}[/tex]

[tex]{\implies{\sf{h = 10 \times 2}}}[/tex]

[tex]{\implies{\sf{h = 20 \: cm}}}[/tex]

[tex]\star{\underline{\boxed{\sf{\red{Height = 20 \: cm}}}}}[/tex]

Hence, the height of trapezium is 20 cm.

[tex]\rule{300}{2.5}[/tex]