3C. Point D is on side BC of equilateral ▲ABC. From point D, perpendicular line segments with lengths 4 and 8 inches are drawn meeting sides AB and AC at points R and T. Find the number of inches in the height of ▲ABC. [Hint: Draw a line segment from A to D.] BRAINLEST GIVEN

3C Point D is on side BC of equilateral ABC From point D perpendicular line segments with lengths 4 and 8 inches are drawn meeting sides AB and AC at points R a class=

Respuesta :

Correct response:

  • The height of triangle ΔABC is 12 inches.

Method used for finding the height

The given parameters are;

ΔABC is an equilateral triangle;

DR = 4 inches

DT = 8 inches

Required:

The height of ΔABC

Solution:

Let θ represent the angle formed by the line from A to D towards the 4 inches side, we have;

  • [tex]AD = \dfrac{4}{sin(\theta)} = \mathbf{\dfrac{8}{sin(60^{\circ} - \theta)} }[/tex]

4·(sin(60° - θ) = 8·sin(θ)

4·(sin60°·cos(θ) - cos(60°)·sin(θ)) = 8·sin(θ)

Dividing by sin(θ) and multiplying by 2 gives;

4·(√3·cot(θ) - 1) = 8 × 2 = 16

√3·cot(θ) - 1 = 16 ÷ 4 = 4

[tex]cot(\theta) = \dfrac{4 + 1}{\sqrt{3} } = \dfrac{5}{\sqrt{3} } [/tex]

[tex]tan(\theta) = \mathbf{ \dfrac{\sqrt{3} }{5} }[/tex]

[tex]tan(\theta) = \dfrac{DR}{AR} [/tex]

Therefore;

[tex]AR = \mathbf{\dfrac{DR}{tan(\theta)} }[/tex]

Which gives;

[tex]AR = \dfrac{4}{\dfrac{\sqrt{3} }{5} } = 4 \times \dfrac{5}{\sqrt{3} } = \mathbf{ \dfrac{20}{\sqrt{3} } }[/tex]

[tex]RB = \mathbf{\dfrac{4}{tan(60^{\circ})}} = \dfrac{4}{\sqrt{3} } [/tex]

AB = AR + RB by angle addition property

Height = AB × sin(∠B) = (AR + RB) × sin(∠B)

Therefore;

[tex]Height \ of \ \Delta ABC, \ h = \left(\dfrac{20}{\sqrt{3} } + \dfrac{4}{\sqrt{3} } \right) \times \dfrac{\sqrt{3} }{2} =\dfrac{24}{\sqrt{3} } \times \dfrac{\sqrt{3} }{2} = \mathbf{ 12}[/tex]

  • The height of triangle ΔABC, h = 12 inches

Learn more about trigonometric ratios here:

https://brainly.com/question/12619999

Ver imagen oeerivona

Otras preguntas