Respuesta :
Answer:
4/1 slope is 4
Step-by-step explanation:
to answer this you put y-y/x-x
it doesn't matter which y you use first but you have to use that same x first as well. then you simply subtract.
[tex](\stackrel{x_1}{-5}~,~\stackrel{y_1}{0})\qquad (\stackrel{x_2}{-4}~,~\stackrel{y_2}{4}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{4}-\stackrel{y1}{0}}}{\underset{run} {\underset{x_2}{-4}-\underset{x_1}{(-5)}}}\implies \cfrac{4}{-4+5}\implies \cfrac{4}{1}\implies 4[/tex]
[tex]\begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{0}=\stackrel{m}{4}(x-\stackrel{x_1}{(-5)}) \\\\\\ y=4(x+5)\implies y=4x+20~~\impliedby \textit{slope-intercept form}[/tex]