Answer:
[tex]\boxed{ \rm \: Henceforth, the \: circumference \: to \: the \: “nearest \: tenth " \; would \;be :- }[/tex]
[tex]\huge{ \boxed{ \bf \: Circumference \approx \: 6.3 \: m}}[/tex]
Step-by-step explanation:
Given:-
Radius = 1 m
To find:-
Circumference to the nearest "tenth".
Solution:-
To find the circumference, we need to solve it using the formula of Circumference.That is ,
[tex]\sf \implies \boxed{ \sf{Circumference} \: \sf = 2\pi{r}}[/tex]
Where , r equals to radius.
We know that π equals to,
[tex]\sf \implies\pi = 3.14[/tex]
Now,
Put the value of π [3.14] and radius(r) [1] on the formula of Circumference.
[tex]\sf \implies{Circumference} =( 2 \times 3.14 \times 1)m[/tex]
Simplify the RHS:
Multiply 3.14 and 2 :-
[tex]\sf \implies{Circumference} = (6.28 \times 1)m[/tex]
When a number is multiplied with 1, "1" would have no value.
So,
[tex]\sf \implies{Circumference} = (6.28)m[/tex]
Remove the parenthesis:-
[tex]\sf \implies{Circumference} = 6.28 \: m[/tex]
Hence, Circumference of the circle equals to 6.28 m.
But,We're asked to find the circumference to the "nearest tenth".
So, the circumference [ 6.28 m] to the nearest Tenth is,
[tex]\sf \implies\boxed{{\sf Circumference} \approx \: 6.30 \: \tt m}[/tex]
Which is,
[tex]\sf \implies\boxed{{\sf Circumference} \approx \: 6.3 \: \tt m}[/tex]
We are Done!
[tex] \rule{265pt}{2pt}[/tex]
I hope this helps!
Let me know if you have any questions.