Respuesta :

Answer:

  • [tex]\sf x=1[/tex]

Step-by-step explanation:

[tex]\sf 7(x - 3) = 4 - 18x[/tex]

➻ Expand: Use Distributive Property.

[tex]\sf 7x-21=4-18x[/tex]

➻ Add 21 to both sides:

[tex]\sf 7x-21+21=4-18x+21[/tex]

➻ Simplify:

[tex]\sf 7x=-18x+25[/tex]

➻ Now, add 18x to both sides:

[tex]\sf 7x+18x=-18x+25+18x[/tex]

➻ Simplify:

[tex]\sf 25x=25[/tex]

➻ Divide both sides by 25:

[tex]\sf \cfrac{25x}{25}=\cfrac{25}{25}[/tex]

[tex]\sf x=1[/tex]

_______________________________________

Answer:

The value of x is 1.

Step-by-step explanation:

Concept :

Here, we will use the below following steps to find a solution using the transposition method:

  • Step 1 :- we will Identify the variables and constants in the given simple equation.
  • Step 2 :- then we Simplify the equation in LHS and RHS.
  • Step 3 :- Transpose or shift the term on the other side to solve the equation further simplest.
  • Step 4 :- Simplify the equation using arithmetic operation as required that is mentioned in rule 1 or rule 2 of linear equations.
  • Step 5 :- Then the result will be the solution for the given linear equation.

[tex]\begin{gathered}\end{gathered}[/tex]

Solution :

[tex]\longrightarrow\tt{ 7(x - 3)= 4 - 18x}[/tex]

[tex]\longrightarrow\tt{7x - 21= 4 - 18x}[/tex]

[tex]\longrightarrow\tt{7x = 4 - 18x + 21}[/tex]

[tex]\longrightarrow\tt{7x = 25 - 18x }[/tex]

[tex]\longrightarrow\tt{7x + 18x = 25 }[/tex]

[tex]\longrightarrow\tt{25x = 25 }[/tex]

[tex]\longrightarrow\tt{x = \dfrac{25}{25}}[/tex]

[tex]\longrightarrow\tt{x = \cancel{\dfrac{25}{25}}}[/tex]

[tex]\longrightarrow\tt{x = 1}[/tex]

[tex]\star{\underline{\boxed{\sf{\red{x = 1}}}}}[/tex]

Hence, the value of x is 1.

[tex]\rule{300}{1.5}[/tex]