Respuesta :
Answer:
[tex]\huge\boxed{\sf y = 3}[/tex]
Step-by-step explanation:
8x + 5y = 19 ------------------ (1)
-8x + y = -1 --------------------(2)
Add both the above equations
8x + 5y + (- 8x + y) = 19 + (-1)
8x + 5y - 8x + y = 19 - 1 [8x - 8x = 0]
5y + y = 18
6y = 18
Divide both sides by 6
y = 18 / 6
y = 3
[tex]\rule[225]{225}{2}[/tex]
Hope this helped!
~AH1807
Hi,
L1 : { 8x + 5y = 19
L2: { -8x + y = -1
L1 : 8x + 5y = 19
5y = 19 - 8x
L2 : (-8x + y = -1) x 5
-40x + 5y = -5
-40x + (19 - 8x) = -5
-48x + 19 = -5
-48x + 19 - 19 = -5 - 19
-48x = -24
-48x / -48 = -24 / -48
x = -0,5
L1 : 8x + 5y = 19
8*0,5 + 5y = 19
4 + 5y = 19
4 - 4 + 5y = 19 - 4
5y = 15
5y / 5 = 15 / 5
y = 3
x = 0,5
y = 3
✅(◠‿◕)