Respuesta :

Answer:

[tex]\huge\boxed{\sf y = 3}[/tex]

Step-by-step explanation:

8x + 5y = 19 ------------------ (1)

-8x + y = -1 --------------------(2)

Add both the above equations

8x + 5y + (- 8x + y) = 19 + (-1)

8x + 5y - 8x + y = 19 - 1        [8x - 8x = 0]

5y + y = 18

6y = 18

Divide both sides by 6

y = 18 / 6

y = 3

[tex]\rule[225]{225}{2}[/tex]

Hope this helped!

~AH1807

Hi,

L1 : { 8x + 5y = 19

L2: { -8x + y = -1

L1 : 8x + 5y = 19

5y = 19 - 8x

L2 : (-8x + y = -1) x 5

-40x + 5y = -5

-40x + (19 - 8x) = -5

-48x + 19 = -5

-48x + 19 - 19 = -5 - 19

-48x = -24

-48x / -48 = -24 / -48

x = -0,5

L1 : 8x + 5y = 19

8*0,5 + 5y = 19

4 + 5y = 19

4 - 4 + 5y = 19 - 4

5y = 15

5y / 5 = 15 / 5

y = 3

x = 0,5

y = 3

✅(◠‿◕)