Respuesta :
The simplified product of [tex](\sqrt{6x^2} \times 4\sqrt{8 x^3} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex] is [tex](16x^2\sqrt{3x} )(3\sqrt{x} - x^3\sqrt{ \times 5x})[/tex]
The product is given as:
[tex](\sqrt{6x^2} \times 4\sqrt{8 x^3} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex]
Combine the expression in the first bracket
[tex](4\sqrt{6x^2 \times 8 x^3} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex]
Further, combine
[tex](4\sqrt{48 x^5} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex]
Split
[tex](4\sqrt{16 x^4 \times 3x} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex]
Take square root of 16x^4
[tex](4 \times 4x^2\sqrt{3x} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex]
[tex](16x^2\sqrt{3x} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex]
Take the square root of 9
[tex](16x^2\sqrt{3x} )\times (3\sqrt{x} - x\sqrt{5x^5})[/tex]
Split
[tex](16x^2\sqrt{3x} )\times (3\sqrt{x} - x\sqrt{x^4 \times 5x})[/tex]
Take the square root of x^4
[tex](16x^2\sqrt{3x} )\times (3\sqrt{x} - x \times x^2\sqrt{ \times 5x})[/tex]
[tex](16x^2\sqrt{3x} )\times (3\sqrt{x} - x^3\sqrt{ \times 5x})[/tex]
[tex](16x^2\sqrt{3x} )(3\sqrt{x} - x^3\sqrt{ \times 5x})[/tex]
Hence, the simplified product of [tex](\sqrt{6x^2} \times 4\sqrt{8 x^3} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex] is [tex](16x^2\sqrt{3x} )(3\sqrt{x} - x^3\sqrt{ \times 5x})[/tex]
Read more about products at:
https://brainly.com/question/6109670
Answer:
C. 3 x StartRoot 6 x EndRoot minus x Superscript 4 Baseline StartRoot 30 x EndRoot + 24 x squared StartRoot 2 EndRoot minus 8 x Superscript 5 Baseline StartRoot 10 EndRoot