contestada

What is the following simplified product? Assume x greater-than-or-equal-to 0 (StartRoot 6 x squared EndRoot 4 StartRoot 8 x cubed EndRoot) (StartRoot 9 x EndRoot minus x StartRoot 5 x Superscript 5 Baseline) 3 x StartRoot 6 x EndRoot x Superscript 4 Baseline StartRoot 30 x EndRoot 24 x squared 8 x Superscript 5 Baseline StartRoot 10 x EndRoot 3 x StartRoot 6 x EndRoot x Superscript 4 Baseline StartRoot 30 x EndRoot 24 x squared StartRoot 2 EndRoot 8 x Superscript 5 Baseline StartRoot 10 EndRoot 3 x StartRoot 6 x EndRoot minus x Superscript 4 Baseline StartRoot 30 x EndRoot 24 x squared StartRoot 2 EndRoot minus 8 x Superscript 5 Baseline StartRoot 10 EndRoot 3 x StartRoot 6 x EndRoot minus x Superscript 4 Baseline StartRoot 30 x EndRoot 24 x squared StartRoot 2 x EndRoot minus 8 x Superscript 5 Baseline StartRoot 10 x EndRoot.

Respuesta :

The simplified product of [tex](\sqrt{6x^2} \times 4\sqrt{8 x^3} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex] is [tex](16x^2\sqrt{3x} )(3\sqrt{x} - x^3\sqrt{ \times 5x})[/tex]

The product is given as:

[tex](\sqrt{6x^2} \times 4\sqrt{8 x^3} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex]

Combine the expression in the first bracket

[tex](4\sqrt{6x^2 \times 8 x^3} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex]

Further, combine

[tex](4\sqrt{48 x^5} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex]

Split

[tex](4\sqrt{16 x^4 \times 3x} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex]

Take square root of 16x^4

[tex](4 \times 4x^2\sqrt{3x} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex]

[tex](16x^2\sqrt{3x} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex]

Take the square root of 9

[tex](16x^2\sqrt{3x} )\times (3\sqrt{x} - x\sqrt{5x^5})[/tex]

Split

[tex](16x^2\sqrt{3x} )\times (3\sqrt{x} - x\sqrt{x^4 \times 5x})[/tex]

Take the square root of x^4

[tex](16x^2\sqrt{3x} )\times (3\sqrt{x} - x \times x^2\sqrt{ \times 5x})[/tex]

[tex](16x^2\sqrt{3x} )\times (3\sqrt{x} - x^3\sqrt{ \times 5x})[/tex]

[tex](16x^2\sqrt{3x} )(3\sqrt{x} - x^3\sqrt{ \times 5x})[/tex]

Hence, the simplified product of [tex](\sqrt{6x^2} \times 4\sqrt{8 x^3} )\times (\sqrt{9x} - x\sqrt{5x^5})[/tex] is [tex](16x^2\sqrt{3x} )(3\sqrt{x} - x^3\sqrt{ \times 5x})[/tex]

Read more about products at:

https://brainly.com/question/6109670

Answer:

C. 3 x StartRoot 6 x EndRoot minus x Superscript 4 Baseline StartRoot 30 x EndRoot + 24 x squared StartRoot 2 EndRoot minus 8 x Superscript 5 Baseline StartRoot 10 EndRoot