Respuesta :
[tex]\huge \bf༆ Answer ༄[/tex]
Let's solve ~
- [tex] \sf(ab) {}^{37} \times (ab) {}^{42} \times (ab) {}^{51} [/tex]
If the numbers with same same base are multiplied them, their exponents add up ~
- [tex] \sf(ab) {}^{37 + 42 + 51} [/tex]
- [tex] \sf(ab) {}^{130} [/tex]
And we can also separate the base (when multiplied) to different bases with having same exponent as the original one.
- [tex] \sf{a {}^ {130} }{ \times b {}^{130} }[/tex]
======== [tex]\huge{\bf{Answer :}}[/tex] ========
[tex] \bold{ \underline{Given : -}}[/tex]
- (ab)³⁷ • (ab)⁴² • (ab)⁵¹
[tex] \: [/tex]
[tex] \bold{ \underline{To \: Find : - }}[/tex]
- Find to result!
[tex] \: [/tex]
[tex] \bold{ \underline{Solution : - }}[/tex]
Did you know that there are exponential properties of matter such as the following :
- [tex] \sf {a}^{m} \times {a}^{n} = {a}^{m + n} [/tex]
Soo :
[tex] \sf \longmapsto (ab {)}^{37} \times {(ab)}^{42} \times {(ab)}^{51} [/tex]
[tex] \sf \longmapsto {(ab)}^{37 + 42} \times {(ab)}^{51} [/tex]
[tex] \sf\longmapsto (ab {)}^{79} \times {(ab)}^{51} [/tex]
[tex] \sf \longmapsto {(ab)}^{79 + 51} [/tex]
[tex] \sf \longmapsto \boxed { \bold{ \red{ {(ab)}^{130}}}} [/tex]
[tex] \: [/tex]
[tex] \bold{ \underline{ \: Conclusion : -}}[/tex]
- [tex] \sf( {ab)}^{37} \times {(ab)}^{42} \times {(ab)}^{51} = \bf {(ab)}^{130} [/tex]
[tex] \: [/tex]
I hope this helps!