Respuesta :

Answer

[tex]x=\frac{3+-\sqrt{53} }{2}[/tex]

Step-by-step explanation:

x² - 3x - 11 = 0

quadratic formula : [tex]\frac{-b+-\sqrt{b^2-4(a)(c)} }{2(a)}[/tex]

where the values of a b and c are derived from the equation

the equation given is written in quadratic form

ax² + bx + c = 0 , x² - 3x - 11 = 0

knowing this we can assign variables

a = 1 , b = - 3 and c = -11

we then plug in these values into the quadratic formula

recall formula [tex]\frac{-b+-\sqrt{b^2-4(a)(c)} }{2(a)}[/tex]

we know a = 1 , b = - 3 and c = -11

- plug in values -

[tex]\frac{-(-3)+-\sqrt{3^2-4(-11)(1)} }{2(1)}[/tex]

the two negative signs in front of the 3 cancel out and it changes to +3

[tex]\frac{3+-\sqrt{3^2-4(-11)(1)} }{2(1)}[/tex]

3² = 3 * 3 = 9

[tex]\frac{3+-\sqrt{9-4(-11)(1)} }{2(1)}[/tex]

( above under square root ) : -4 * -11 * 1 = 44

below : 2 * 1 = 2

[tex]\frac{3+-\sqrt{9+44} }{2}[/tex]

9 + 44 = 53

we're left with [tex]x=\frac{3+-\sqrt{53} }{2}[/tex]

and we are done!

Answer:

I believe the answer should be x = 3 ± [tex]\sqrt{53}[/tex] over 2 (Fraction)

Step-by-step explanation:

[tex]x^2-3x-11=0[/tex]

[tex]a=1[/tex]

[tex]b=-3[/tex]

[tex]c=-11[/tex]

[tex]x=\frac{-(-3) ± sqrt(-3)^2-4*1(-11)}{2*1}[/tex]

= x = 3 ± [tex]\sqrt{53}[/tex] over 2 (Fraction)