contestada

ABC with altitude \overline{BD}
BD
drawn to hypotenuse \overline{AC}
AC
. If AD=8AD=8 and BD=24,BD=24, what is the length of \overline{AC}?
AC
?

Respuesta :

The length of [tex]\overline{AC}[/tex] is given by the relationship between the similar triangles

ΔABD and ΔBDC.

  • [tex]\overline{AC}[/tex] = 80

Reasons:

The given parameters are;

The altitude of triangle ΔABD = [tex]\overline {BD}[/tex]

The hypotenuse of formed right triangle = [tex]\overline {AC}[/tex]

The length of AD = 8

Length of BD = 24

Whereby  ΔABD is a right triangle

We have;

ΔABD is similar to ΔBDC

Therefore, by similar triangle proportional sides relationship, we have;

[tex]\displaystyle \frac{\overline{AD}}{\overline{BD}} = \mathbf{ \frac{\overline{BD}}{\overline{DC}}}[/tex]

Which gives;

[tex]\overline{BD}^2[/tex] = [tex]\mathbf{\overline{DC} \times \overline{AD}}[/tex]

Therefore;

[tex]\displaystyle \overline{DC} = \mathbf{\frac{\overline{BD}^2}{\overline {AD}}}[/tex]

[tex]\displaystyle \overline{DC} = \frac{24^2}{8} = \mathbf{72}[/tex]

[tex]\overline{AC} = \overline{DC} + \overline{AD}[/tex]

Which gives;

[tex]\overline{AC} = 72 + 8 =\mathbf{ 80}[/tex]

Learn more about similar triangles here:

https://brainly.com/question/4618367

Ver imagen oeerivona