Respuesta :

Answer:

[tex]x = \frac{70 + \sqrt{900} }{50}\\[/tex] or [tex]x = 2[/tex]

Or:

[tex]x = \frac{70 - \sqrt{900} }{50}\\[/tex] or [tex]x = \frac{4}{5}[/tex]

Step-by-step explanation:

Step 1 - Simplify by expanding the brackets:

[tex](5x - 7)^2\\(5x - 7)(5x - 7)\\25x^2 - 35x - 35x + 49\\25x^2 - 70x + 49 - 1\\25x^2 - 70x + 48 = 8[/tex]

Step 2 - Subtract 8 from both sides so the equation equals 0:

[tex]25x^2 - 70x + 48 - 8 = 8 - 8\\25x^2 - 70x + 40 = 0[/tex]

Step 3 - Use the quadratic formula:

[tex]x = \frac{-b +- \sqrt{b^2 - 4ac} }{2a}\\a = 25\\b = -70\\c = 40[/tex]

Plug variables in:

[tex]\frac{-(-70) +- \sqrt{(-70)^2 - (4 * 25 * 40)} }{2 * 25}[/tex]

[tex]\frac{70 +- \sqrt{4900 - 4000} }{50}\\\\\frac{70 +- \sqrt{900} }{50}\\[/tex]

So x is either:

[tex]x = \frac{70 + \sqrt{900} }{50}\\[/tex]

[tex]x = 2[/tex]

Or:

[tex]x = \frac{70 - \sqrt{900} }{50}\\[/tex]

[tex]x = \frac{4}{5}[/tex]

Hope this helps!