Respuesta :

[tex]\large\boxed{\tt\:Question}[/tex]

x² - 8x + 12 = 0

Hello meremyj! Here's your answer with explanation.

[tex]\large\boxed{\tt\:Answer\:with\:Explanation}[/tex]

[tex]x ^ { 2 } - 8 x + 12[/tex]

Use the biquadratic formula =》 [tex]x=\frac{-b±\sqrt{\left(-b\right)^{2}-4 ac}}{2}[/tex]

Now,

  •    b = 8
  •    c = 12
  •    a =  1

Using the biquadratic formula & substituting the values....

[tex]x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 12}}{2} \\x=\frac{-\left(-8\right)±\sqrt{64-4\times 12}}{2} \\x=\frac{-\left(-8\right)±\sqrt{64-48}}{2} \\x=\frac{-\left(-8\right)±\sqrt{16}}{2} \\x=\frac{-\left(-8\right)±4}{2} \\\underline{\underline{x=\frac{8±4}{2}} }[/tex]

Now, solve when  [tex]x=\frac{8+4}{2}[/tex]

[tex]x=\frac{8+4}{2}\\x=\frac{12}{2} \\\boxed{\bf\:x=6 }[/tex]

Now, solve when [tex]x = \frac{8-4}{2}[/tex]

[tex]x = \frac{8-4}{2}\\x = \frac{4}{2}\\\boxed{\bf\:x=2}[/tex]

______________

  • The value of  x  can be 6 & 2.

______________

Hope it'll help you!

Lucäžž