[tex]9\: \: \frac{ \sin( \theta) }{1 + \cos( \theta) } \: is \: equal \: to \\ [/tex]
[tex](a) \: \frac{1 + \cos( \theta) }{ \sin( \theta) } \\ (b) \frac{1 - \cos( \theta) }{ \sin( \theta) } \\ (c) \: \frac{1 - \cos( \theta) }{ \cos( \theta) } \\ (d) \: \frac{1 - \sin( \theta) }{ \cos( \theta) } \\ [/tex]
Correct Explanation with be mark as brainliest.​

Respuesta :

Option (b) is your correct answer.

Step-by-step explanation:

[tex]\large\underline{\sf{Solution-}}[/tex]

Given Trigonometric expression is

[tex]\rm :\longmapsto\:\dfrac{sin\theta }{1 + cos\theta }[/tex]

So, on rationalizing the denominator, we get

[tex]\rm \:  =  \: \dfrac{sin\theta }{1 + cos\theta } \times \dfrac{1 - cos\theta }{1 - cos\theta } [/tex]

We know,

[tex] \purple{\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) = {x}^{2} - {y}^{2} \: }}}[/tex]

So, using this, we get

[tex]\rm \:  =  \: \dfrac{sin\theta (1 - cos\theta )}{1 - {cos}^{2}\theta } [/tex]

We know,

[tex] \purple{\rm :\longmapsto\:\boxed{\tt{ {sin}^{2}x + {cos}^{2}x = 1}}}[/tex]

So, using this identity, we get

[tex]\rm \:  =  \: \dfrac{sin\theta (1 - cos\theta )}{{sin}^{2}\theta } [/tex]

[tex]\rm \:  =  \: \dfrac{1 - cos\theta }{sin\theta } [/tex]

Hence,

[tex] \\ \red{\rm\implies \:\boxed{\tt{ \rm \:\dfrac{sin\theta }{1 + cos\theta }   =  \: \dfrac{1 - cos\theta }{sin\theta } }}} \\ [/tex]

Answer:

need explaintion pleaawee