Respuesta :

Answer:

15 ways

Step-by-step explanation:

Recall:

[tex]nCk=\frac{n!}{k!(n-k)!}[/tex]

[tex]n[/tex] = Number of items given in a set

[tex]k[/tex] = Number of objects selected from a set of [tex]n[/tex] objects

Given:

[tex]n[/tex] = 6 people

[tex]k[/tex] = 4 chairs

Calculation:

[tex]6C4=\frac{6!}{4!(6-4)!}=\frac{720}{24(2)}=\frac{720}{48}=15[/tex]

Therefore, there are 15 different combinations.