Will mark brainliest please help asap

Answer:
15 ways
Step-by-step explanation:
Recall:
[tex]nCk=\frac{n!}{k!(n-k)!}[/tex]
[tex]n[/tex] = Number of items given in a set
[tex]k[/tex] = Number of objects selected from a set of [tex]n[/tex] objects
Given:
[tex]n[/tex] = 6 people
[tex]k[/tex] = 4 chairs
Calculation:
[tex]6C4=\frac{6!}{4!(6-4)!}=\frac{720}{24(2)}=\frac{720}{48}=15[/tex]
Therefore, there are 15 different combinations.