HELP PLEASE I NEED IT ASAP 3. Solve the compound inequality. 9 <_4x – 3 < 23. Write the solution in interval notation.

HELP PLEASE I NEED IT ASAP 3 Solve the compound inequality 9 lt4x 3 lt 23 Write the solution in interval notation class=

Respuesta :

Answer:

X=15

Step-by-step explanation:

                    4*x/3+3-(23)=0

Step by step solution :

STEP

1

:

           x

Simplify   —

           3

Equation at the end of step

1

:

       x          

 ((4 • —) +  3) -  23  = 0

       3          

STEP

2

:

Rewriting the whole as an Equivalent Fraction

2.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  3  as the denominator :

        3     3 • 3

   3 =  —  =  —————

        1       3  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

2.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

4x + 3 • 3     4x + 9

——————————  =  ——————

    3            3  

Equation at the end of step

2

:

 (4x + 9)    

 ———————— -  23  = 0

    3        

STEP

3

:

Rewriting the whole as an Equivalent Fraction :

3.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  3  as the denominator :

         23     23 • 3

   23 =  ——  =  ——————

         1        3  

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

(4x+9) - (23 • 3)     4x - 60

—————————————————  =  ———————

        3                3  

STEP

4

:

Pulling out like terms :

4.1     Pull out like factors :

  4x - 60  =   4 • (x - 15)

Equation at the end of step

4

:

 4 • (x - 15)

 ————————————  = 0

      3      

                    4*x/3+3-(23)=0

Step by step solution :

STEP

1

:

           x

Simplify   —

           3

Equation at the end of step

1

:

       x          

 ((4 • —) +  3) -  23  = 0

       3          

STEP

2

:

Rewriting the whole as an Equivalent Fraction

2.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  3  as the denominator :

        3     3 • 3

   3 =  —  =  —————

        1       3  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

2.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

4x + 3 • 3     4x + 9

——————————  =  ——————

    3            3  

Equation at the end of step

2

:

 (4x + 9)    

 ———————— -  23  = 0

    3        

STEP

3

:

Rewriting the whole as an Equivalent Fraction :

3.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  3  as the denominator :

         23     23 • 3

   23 =  ——  =  ——————

         1        3  

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

(4x+9) - (23 • 3)     4x - 60

—————————————————  =  ———————

        3                3  

STEP

4

:

Pulling out like terms :

4.1     Pull out like factors :

  4x - 60  =   4 • (x - 15)

Equation at the end of step

4

:

 4 • (x - 15)

 ————————————  = 0

      3      

                    4*x/3+3-(23)=0

Step by step solution :

STEP

1

:

           x

Simplify   —

           3

Equation at the end of step

1

:

       x          

 ((4 • —) +  3) -  23  = 0

       3          

STEP

2

:

Rewriting the whole as an Equivalent Fraction

2.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  3  as the denominator :

        3     3 • 3

   3 =  —  =  —————

        1       3  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

2.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

4x + 3 • 3     4x + 9

——————————  =  ——————

    3            3  

Equation at the end of step

2

:

 (4x + 9)    

 ———————— -  23  = 0

    3        

STEP

3

:

Rewriting the whole as an Equivalent Fraction :

3.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  3  as the denominator :

         23     23 • 3

   23 =  ——  =  ——————

         1        3  

Adding fractions that have a common denominator :

3.2       Adding up the two equivalent fractions

(4x+9) - (23 • 3)     4x - 60

—————————————————  =  ———————

        3                3  

STEP

4

:

Pulling out like terms :

4.1     Pull out like factors :

  4x - 60  =   4 • (x - 15)

Equation at the end of step

4

:

 4 • (x - 15)

 ————————————  = 0

      3      

Answer:

3<_x<13/2

Step-by-step explanation: