Respuesta :

Answer:

Answer: The third equation

Step-by-step explanation:

From the general equation of a line:

[tex] \hookrightarrow \: { \boxed{ \tt{y = mx + b}}}[/tex]

• m is the slope

[tex]{ \tt{slope = \frac{y _{2} - y _{1} }{x _{2} - x _{1}} }} \\ \\ m = { \tt{ \frac{ - 1- ( - 2)}{4 - 0} = \frac{1}{4} }}[/tex]

• b is the y-intercept:

[tex]{ \tt{y = mx + b}}[/tex]

consider point (0, -2):

[tex]{ \tt{ - 2 = (0 \times \frac{1}{4} ) + b }} \\ \\ { \tt{b = - 2}}[/tex]

• Therefore, equation is;

[tex] \dashrightarrow \: { \boxed{ \tt{y = \frac{1}{4}x - 2 }}}[/tex]