Find the value of x in the figure below. Enter a number only.

D will be 48
ATQ
[tex]\\ \bull\tt\dashrightarrow 48+48+(90-x)=180[/tex]
[tex]\\ \bull\tt\dashrightarrow 96+90-x=180[/tex]
[tex]\\ \bull\tt\dashrightarrow 186-x=180[/tex]
[tex]\\ \bull\tt\dashrightarrow 186-180=x[/tex]
[tex]\\ \bull\tt\dashrightarrow x=6[/tex]
Answer:
In the figure, m‹A = 90°
• Therefore:
[tex]{ \tt{x + 48 \degree = 90 \degree}} \\ \dashrightarrow \: { \sf \{angles \: of \: isosceles \: triangle \}} \\ \\ { \tt{x = 90 \degree - 48 \degree}} \\ \\ \dashrightarrow{ \boxed{ \boxed{ \tt{ \: \: x = 42 \degree \: \: }}}}[/tex]