By definition of average velocity,
[tex]\vec v_{\rm ave} = \dfrac{\Delta \vec r}{\Delta t} = \dfrac{(x_2-x_1)\,\vec\imath + (y_2-y_1)\,\vec\jmath}{10.7\,\mathrm s}[/tex]
If
[tex]\vec v_{\rm ave} = (-2.25\,\vec\imath + 1.79\,\vec\jmath)\dfrac{\rm m}{\rm s}[/tex]
and [tex]x_1=-17.5\,\mathrm m[/tex] and [tex]y_1=23.1\,\mathrm m[/tex], then
[tex]-2.25\dfrac{\rm m}{\rm s} = \dfrac{x_2 - (-17.5\,\mathrm m)}{10.7\,\mathrm s} \\\\ 1.79\dfrac{\rm m}{\rm s} = \dfrac{y_2 - 23.1\,\mathrm m}{10.7\,\mathrm s}[/tex]
Solve for [tex]x_2[/tex] and [tex]y_2[/tex]:
[tex]x_2 = 17.5\,\mathrm m + \left(-2.25\dfrac{\rm m}{\rm s}\right)(10.7\,\mathrm s) \approx \boxed{-6.58\,\mathrm m}[/tex]
[tex]y_2 = 23.1\,\mathrm m + \left(1.79\dfrac{\rm m}{\rm s}\right)(10.7\,\mathrm s) \approx \boxed{42.3\,\mathrm m}[/tex]