Respuesta :

Answer:

8.25 cm and 12.5 cm

Step-by-step explanation:

Given a line parallel to a side of the triangle and it intersects the other two sides, then it divides those sides proportionally, that is

(i)

[tex]\frac{AD}{DB}[/tex] = [tex]\frac{AE}{EC}[/tex] , substitute values

[tex]\frac{2.5}{3}[/tex] = [tex]\frac{3.75}{EC}[/tex] ( cross- multiply )

2.5 EC = 11.25 ( divide both sides by 2.5 )

EC = 4.5 cm

Then

AC = AE + EC = 3.75 + 4.5 = 8.25 cm

--------------------------------------------------------------------

(ii)

Similarly

[tex]\frac{AD}{DB}[/tex] = [tex]\frac{AE}{EC}[/tex] , substitute values

[tex]\frac{3.6}{10-3.6}[/tex] = [tex]\frac{4.5}{EC}[/tex] , that is

[tex]\frac{3.6}{6.4}[/tex] = [tex]\frac{4.5}{EC}[/tex] ( cross- multiply )

3.6 EC = 28.8 ( divide both sides by 3.6 )

EC = 8 cm

and

AC = AE + EC = 4.5 + 8 = 12.5 cm