Respuesta :

Answer:

The lateral area is equal to

[tex]LA=64\sqrt{3}\ m^{2}[/tex]

Step-by-step explanation:

In this problem the lateral area is equal to the area of one equilateral triangle multiplied by [tex]4[/tex]

To find the area of one equilateral triangle calculate the height

The area of the triangle is equal to

[tex]A=\frac{1}{2}bh[/tex]

we have

[tex]b=8\ m[/tex]

Applying the Pythagoras theorem

[tex]h^{2}=8^{2} -4^{2} \\h^{2}=64-16\\ h=\sqrt{48} \\ h=4\sqrt{3}\ m[/tex]

The area of one triangle is equal to

[tex]A=\frac{1}{2}(8)(4\sqrt{3})\ m^{2}[/tex]

so

The lateral area is equal to

[tex]LA=4\frac{1}{2}(8)(4\sqrt{3})=64\sqrt{3}\ m^{2}[/tex]