Respuesta :

Space

Answer:

[tex]\displaystyle \frac{d}{dx}[x^x] = x^x[\ln (x) + 1][/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = x^x[/tex]

Step 2: Differentiate

  1. Rewrite:                                                                                                         [tex]\displaystyle y = e^\big{x\ln x}[/tex]
  2. Exponential Differentiation [Derivative Rule - Chain Rule]:                       [tex]\displaystyle y = e^\big{x\ln x} \cdot \frac{d}{dx}[x\ln x][/tex]
  3. Derivative Rule [Product Rule]:                                                                     [tex]\displaystyle y = e^\big{x\ln x}[(x)'\ln x + x(\ln x)'][/tex]
  4. Basic Power Rule/Logarithmic Differentiation:                                           [tex]\displaystyle y = e^\big{x\ln x}(\ln x + 1)[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation