Respuesta :
To find the slope of a line, we can use the following formula:
[tex] \displaystyle \large{m = \frac{y_2 - y_1}{x_2 - x_1} }[/tex]
m-term stands for slope or gradient. The formula is useful whenever you want to find a slope of two points.
Let these be the following:
[tex] \displaystyle \large{(x_1,y_1) = (0, - 11)} \\ \displaystyle \large{(x_2,y_2) = (8, - 8)}[/tex]
Substitute the points in formula:
[tex] \displaystyle \large{m = \frac{ - 8 -( - 11)}{ 8 - 0} }[/tex]
Negative multiply negative always come out as positive.
[tex] \displaystyle \large{m = \frac{ - 8 + 11}{ 8 - 0} } \\ \displaystyle \large{m = \frac{ 3}{ 8 } } \\ [/tex]
Since m stands for slope, we can say that:
[tex] \displaystyle \large \boxed{ \tt{slope = \frac{3}{8} }}[/tex]
Answer:
Step-by-step explanation:
(x₁ ,y₁) = (0,-11) & (x₂ , y₂) = (8,-8)
Slope = [tex]\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}\\[/tex]
[tex]=\dfrac{-8-[-11]}{8-0}\\\\=\dfrac{-8+11}{8}\\\\=\dfrac{3}{8}[/tex]