Respuesta :

To find the slope of a line, we can use the following formula:

[tex] \displaystyle \large{m = \frac{y_2 - y_1}{x_2 - x_1} }[/tex]

m-term stands for slope or gradient. The formula is useful whenever you want to find a slope of two points.

Let these be the following:

[tex] \displaystyle \large{(x_1,y_1) = (0, - 11)} \\ \displaystyle \large{(x_2,y_2) = (8, - 8)}[/tex]

Substitute the points in formula:

[tex] \displaystyle \large{m = \frac{ - 8 -( - 11)}{ 8 - 0} }[/tex]

Negative multiply negative always come out as positive.

[tex] \displaystyle \large{m = \frac{ - 8 + 11}{ 8 - 0} } \\ \displaystyle \large{m = \frac{ 3}{ 8 } } \\ [/tex]

Since m stands for slope, we can say that:

[tex] \displaystyle \large \boxed{ \tt{slope = \frac{3}{8} }}[/tex]

Answer:

Step-by-step explanation:

(x₁  ,y₁) = (0,-11)     & (x₂ , y₂) =   (8,-8)

Slope = [tex]\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}\\[/tex]

          [tex]=\dfrac{-8-[-11]}{8-0}\\\\=\dfrac{-8+11}{8}\\\\=\dfrac{3}{8}[/tex]