Respuesta :
Answer: 17
Hello,
Step-by-step explanation:
n is divisible by 4.
n +1 is divisible by 5
n + 2 is divisible by 6
n <1000
[tex]\left\{\begin{array}{ccc}n&=&4*k_1\\n+1&=&5*k_2\\n+2&=&6*k_3\\\end{array}\right.\\\\4*k_1+1=5k_2\Longrightarrow\ k_2=\dfrac{4k_1+1}{5} \Longrightarrow\ k_1=1+5*t\ , k_2=1+4*t\\\\4*k_1+2=6k_3\Longrightarrow\ k_3=\dfrac{4(1+5t)+2}{6} \Longrightarrow\ k_3=1+\dfrac{10*t}{3} \\\\\Longrightarrow\ t=3z\\k_3=1+10z\\n+2=6(1+10z)\\n=4+60z\\\\1000 < 4+60z \Longrightarrow\ z \leq 16\\[/tex]
There are 17: from 4+0*60=4 to 4+16*60=964.
Answer:
17
Step-by-step explanation:
these positive integers are :
4, 64, 124, 184 ... , 964
964 = 4 + (n-1) (60)
964 = 4 + 60n -60
964 = 60n -56
60n = 1020
n = 1020/60
n = 17
so, the number of special integers smaller than 1000 are = 17