Respuesta :

Hi there!

[tex]f(x)+f(x+1)=4f(x)[/tex]

There are 3 parts to this equation:

f(x)

f(x+1)

4f(x)

We must first determine these three parts separately.

1) f(x)

We're given that  [tex]f(x)=3^x[/tex]:

⇒ [tex]f(x)=3^x[/tex]:

2) f(x+1)

Now, we must find f(x+1). To do so, add 1 to x in the original function [tex]f(x)=3^x[/tex]:

⇒ [tex]f(x+1)=3^x^+^1[/tex]

3) 4f(x)

To find 4f(x), multiply the original function [tex]f(x)=3^x[/tex] by 4:

[tex]4f(x)=4*3^x[/tex]:

4) Put it all together

Now, plug each of the three parts into the equation [tex]f(x)+f(x+1)=4f(x)[/tex]:

[tex]f(x)+f(x+1)=4f(x)[/tex]

[tex]3^x+3^x^+^1=4*3^x\\3^x+3^x*3=4*3^x[/tex]

Factor the left side

[tex]3^x*(1+3)=4*3^x[/tex]

Divide both sides by 3^x

[tex]1+3=4\\4=4[/tex]

Because this equation is true, [tex]f(x)+f(x+1)=4f(x)[/tex] is therefore true.

I hope this helps!