Respuesta :

Tasyha

Answer:

[tex]s = \frac{9± \sqrt{ - 39} }{4} [/tex]

Step-by-step explanation:

[tex] \frac{3(s - 5)}{4 - 3} = \frac{4s \times (s - 3)}{2} [/tex]

➡️ [tex] \frac{3(s - 5)}{1} = 2s \times (s - 3)[/tex]

➡️ [tex]3s - 15 = 2 {s}^{2} - 6s[/tex]

➡️ [tex]3s - 15 - 2 {s}^{2} + 6s = 0[/tex]

➡️ [tex]9s - 15 - 2 {s}^{2} = 0[/tex]

➡️ [tex] - 2 {s}^{2} + 9s - 15 = 0[/tex]

➡️ [tex]2 {s}^{2} - 9s + 15 = 0[/tex]

➡️ [tex]s = \frac{ - ( - 9)± \sqrt{( - 9 {)}^{2} - 4 \times 2 \times 15} }{2 \times 2} [/tex]

➡️ [tex]s = \frac{9± \sqrt{81 - 120} }{4} [/tex]

➡️ [tex]s = \frac{9± \sqrt{ - 39} }{4} [/tex]

➡️ [tex]s∉ℝ[/tex]